- Get link
- Google+
- Other Apps

As you can see in the R output of my NCAA team model code in one of my public basketball repositories, the offense at home scores points at a rate about \( e^{0.0302} = 1.031 \) times the rate on a neutral court, everything else the same. Likewise, the defense at home allows points at a rate about \( e^{-0.0165} = 0.984\) times the rate on a neutral court; in both cases the neutral court rate is the reference level. Notice the geometric asymmetry; \( 1.031\cdot 0.984 = 1.015 > 1\). The implication is that the offense is responsible for about the fraction \[ \frac{(1.031-1)}{(1.031-1)+(1-0.984)} = 0.66 \] of the scoring pace. That is, offensive controls 2/3 of the pace, defense 1/3 of the pace. The consensus opinion the analysts came up with at Sloan? It was 2/3 offense, 1/3 defense! It's nice when things work out, isn't it?

I've used NCAA basketball because there are plenty of neutral court games; to examine the NBA directly we'll have to use a more sophisticated (but perhaps less beautiful) approach involving the variation in possession times. I'll do that next, and I'll also show you how to apply this new information to make better game predictions. Finally, there's a nice connection to some recent work on inferring causality that I'll outline.

## Comments

## Post a Comment